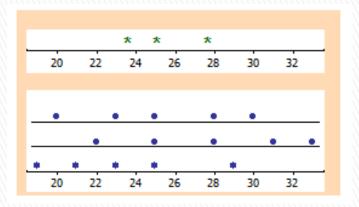
One-way ANOVA

Comparing several means

Inference for the mean


- We know how to perform inference for 1 or two samples of quantitative data where µ is our parameter of interest.
 Z vs. T inference
- Now we will compare one variable over more than two samples using a one-way Analysis of Variance (ANOVA) Test

Comparing several means

- The first step is to see if there is an overall difference between the groups:
 - H_0 : All means μ_i are equal $\Leftrightarrow \mu_1 = \mu_2 = \ldots = \mu_k$
 - H_a : <u>Not all</u> means μ_i are equal
- This will require a new distribution, the F distribution
- If we find a difference, we will follow up to see which group (or groups) are different

Means of groups visually

If we have sampled from the same (or similar enough) population then the variance of the sample means should be close to the average sample variance

If we have sampled from different populations then the variance of the sample means > the average sample variance

Equal Population means

Unequal Population means

ANOVA Assumptions

Similar to Regression assumptions

- 1. Each sample must be independent SRSs.
- 2. Each population represented by the k samples must be Normally distributed. However, the test is robust to deviations from Normality for large-enough samples
- 3. The ANOVA F-test requires that all k populations have the same standard deviation σ .
 - There are inference tests for this, but they tend to be sensitive to deviations from the Normality assumption or require equal sample sizes.
 - Equal sample sizes make the ANOVA more robust to deviations from the equal σ rule.
 - A simple and conservative approach: The ANOVA F test is appropriate when the largest sample standard deviation is no more than about twice as large as the smallest sample standard deviation.

> The basic format of a one way ANOVA table is as follows:

Source	D.o.F	SS	MS	F	P-Val
Groups	DFg	SSG	MSG	Test Statistic	?
Error	DF _E	SSE	MSE	_	_
Total	DF _T	SST	_	_	-

 Ultimately our goal is to find our F test Statistic and P-val to make our decision

From there we begin filling out our table. The easiest place to start is D.o.F:

Source	D.o.F	SS	MS	F	P-Val
Groups	DFg	SSG	MSG	Test Statistic	?
Error	DF _e	SSE	MSE	-	-
Total	DF _T	SST	_	_	_

D.o.F. for Groups:

$$DF_g = # of Groups-1 = k-1$$

Next we need the total D.o.F.

$$DF_T = n-1$$

From there:

$$DF_{E} = DF_{T} - DF_{g} = (n-1) - (k-1) = n-k$$

• We keep filling out our table moving right:

Source	D.o.F	SS	MS	F	P-Val
Groups	DFg	SSG	MSG	Test Statistic	?
Error	DF _E	SSE	MSE	_	-
Total	DF _T	SST	_	_	_

The next step deals with calculating the sum of squares:

• SSG =
$$\sum_{i=1}^{k} n_k (\bar{x}_k - \bar{x}_{Overall})$$

- SSE = $\sum_{i=1}^{k} (n_i 1) s_i^2$
- SST = SSG + SSE
- The calculation for these gets complicated, but if you have 2/3 SSs you can easily find the other.

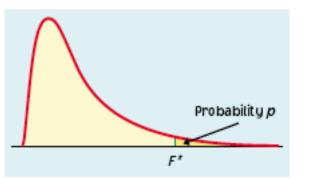
Once we have our SS column calculated we then scale by the D.o.F. to find the MS

Source	D.o.F	SS	MS	F	P-Val
Groups	DF _q	SSG	MSG	Test Statistic	?
Error	DF _F	SSE	MSE	-	_
Total	DF _T	SST	_	_	_

• $MSG = SSG/DF_{q}$

• $MSE = SSE/DF_{F}$

Finally we find our F Test Statistic by looking at the ratio of the MS terms


Source	D.o.F	SS	MS	F	P-Val
Groups	DFg	SSG	MSG	Test Statistic	?
Error	DF _E	SSE	MSE	_	_
Total	DF_{T}	SST	_	_	_

F Test Stat:

$$F = \frac{\text{MSG}}{\text{MSE}}$$

We then go to the F table w/ both D.o.F. to find a p-val and make a decision

The F Distribution

- The F distribution is asymmetrical and has two distinct degrees of freedom. One for the numerator (DF_g) and denominator (DF_E)
- In words the F test statistic looks like this:

 $F = \frac{variation among the sample means}{variation among individuals in the samples}$

- If the variability of means is:
 - Smaller than variability within samples then *F* tends to be small.
 - Larger than variability within samples then F tends to be large.

ANOVA Table calculation Example

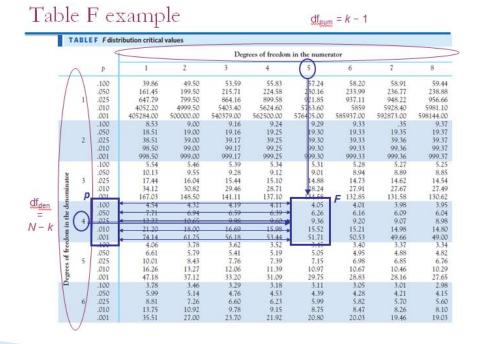
Suppose we were comparing k=6 groups and there were n=10 observations

• Given:

		ANOVA	A Table		
Source	D.o.F	SS	MS	F	p-value
Groups		0.17820			
Error				-	-
total		0.18665	-	-	-

Fill out the rest of the ANOVA table:

F Table Example


Full table should be:

			ANOVA Table		
Source	D.o.F	SS	MS	F	p-value
Model	5	0.1782	0.03564	16.87100592	0.008595
Error	4	0.00845	0.0021125	-	-
total	9	0.18665	-	-	-

- From the Table:
 - Between 0.01 and 0.001

In Excel:

0.008565 =F.DIST.RT(16.87,6-1,10-6)

ANOVA Example 1

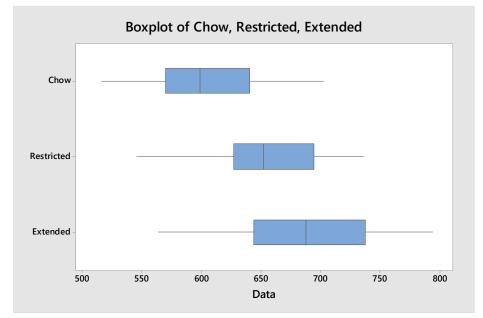
- Male lab rats were randomly assigned to 3 groups differing in access to food for 40 days. The rats were weighed (in grams) at the end.
 - Group 1: access to chow only.
 - Group 2: chow plus access to cafeteria food restricted to 1 hour every day.
 - Group 3: chow plus extended access to cafeteria food (all day long every day).
- Does the type of food access influence the body weight of male lab rats significantly?

Chow	Restricted	Extended
516	546	564
547	599	611
546	612	625
564	627	644
577	629	660
570	638	679
582	645	687
594	635	688
597	660	706
599	676	714
606	695	738
606	687	733
624	693	744
623	713	780
641	726	794
655	736	
667		
690		

703

ANOVA Example 1

Hypotheses:


 $H_0: \mu_{chow} = \mu_{restricted} = \mu_{extended}$ $H_a: H_0$ is not true (at least one mean μ is different)

- First we must examine the data to check our assumptions:
 - We can assume good sampling techniques
 - Look at Boxplots for deviations from normality, outliers, equal variances
 - Check summary Statistics

Descriptive Statistics: Chow, Restricted, Extended

Statistics

Variable	Ν	Mean	StDev
Chow	19	605.6	49.6
Restricted	16	657.3	50.7
Extended	15	691.1	63.4

Minitab ANOVA Output

- Stat -> ANOVA -> One-Way
 Default options are fine for our purpose:
- This means we Reject the Null.
- In our context, this means there are significantly different responses for different treatments.
- To see which ones, we must do a follow-up examination

One-way ANOVA: Chow, Restricted, Extended

Method

Equal variances were assumed for the analysis.

Factor Information

Factor	Levels	Values
Factor	3	Chow, Restricted, Extended

Analysis of Variance

				F-Value	
Factor	2	63400	31700	10.71	0.000
		139174			
Total	49	202573			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
54.4164	31.30%	28.37%	22.06%

Means

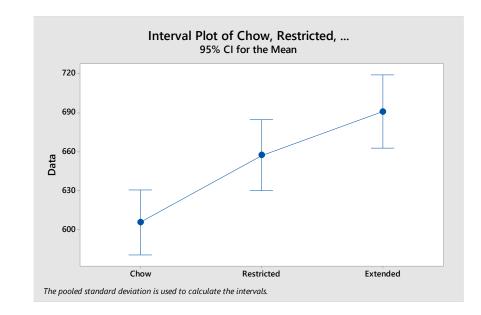
Factor	N	Mean	StDev 95% CI	
Chow	19	605.6	49.6	(580.5, 630.7)
Restricted	16	657.3	50.7	(629.9, 684.7)
Extended	15	691.1	63.4	(662.9, 719.4)

Pooled StDev = 54.4164

ANOVA Follow-up

- It is clear that the Chow group is significantly different from extended, and most likely from Restricted.
- We can run follow up (pooled) t tests to find out for sure:

μ₁: mean of Restricted μ₂: mean of Chow Difference: μ₁ - μ₂


T-Value DF P-Value 3.03 31 0.005 μ₁: mean of Restricted μ₂: mean of Extended Difference: μ₁ - μ₂

T-Value DF P-Value -1.63 26 0.114

Means

Factor	N	Mean	StDev 95% CI	
Chow	19	605.6	49.6	(580.5, 630.7)
Restricted	16	657.3	50.7	(629.9, 684.7)
Extended	15	691.1	63.4	(662.9, 719.4)

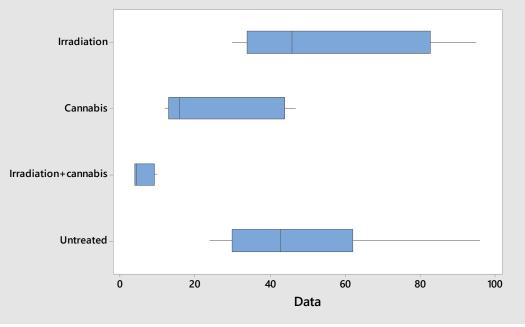
Pooled StDev = 54.4164

ANOVA Example 2

- The results of a study looking at the effect of treatments of brain tumors can be found in Canvas. We have 4 Groups:
 - 1. Irradiation
 - 2. Cannabinoids
 - 3. Irradiation & Cannabinoids
 - 4. Untreated
- Our hypotheses would be:

*H*₀: Means are the Same or: $\mu_{l} = \mu_{C} = \mu_{l\&R} = \mu_{U}$ *H*_a: *H*₀ is not true (at least one mean μ is different)

Examining the Data


- We can assume good sampling techniques
- Look at Boxplots for deviations from normality, outliers, equal variances
- Check summary Statistics

We technically do not meet ANOVA assumptions here, however, there is clearly a difference

Statistics

Variable	N	Mean	StDev
Irradiation	4	54.3	28.2
Cannabis	5	26.00	16.63
Irradiation+cannabis	6	6.00	2.76
Untreated	7	48.29	24.80

Boxplot of Irradiation, Cannabis, Irradiation+cannabis, Untreated

